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Abstract
As the importance of GPUs increase for general-purpose computing in supercomputers, so does
the value and necessity of efficient GPU communication solutions in High-Performance Com-
puting (HPC) software frameworks, such as waLBerla. In this work, we present optimizations
to the state-of-the-art GPU communication solution, and an extension to the communication
infrastructure to use buffers in GPU memory. Proposed solutions increase the performance
of GPU Lattice Boltzmann simulations by 50%, in a worst case scenario for communication,
with respect to the state-of-the-art communication solution. Communication latency was also
overlapped with computations, and the latency could be hidden by 50%, also in a worst case
scenario for communication.
Keywords: GPU communication engineering, waLBerla framework, Lattice Boltzmann method.



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 GPUDirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Concurrency Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 CUDA-aware MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Lattice Boltzmann Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Lid-Driven Cavity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 waLBerla Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6.1 Application Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 12
3.1 Optimized Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 GPU Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 HPC Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 A Scalable GPU Communication Framework for Stencil Applications 21
4.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 GPU Communication Engineering . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Base Communication Architecture . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Communication Architecture Extensions . . . . . . . . . . . . . . . . 22

4.3 Timeloop Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Configurable GPU Field Memory Alignment . . . . . . . . . . . . . . . . . . 26

5 Materials and Methods 27
5.1 Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Communication Performance . . . . . . . . . . . . . . . . . . . . . . 29
5.3.2 Communication Direction Imbalance . . . . . . . . . . . . . . . . . . 30
5.3.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



6 Results and Discussion 32
6.1 Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Communication Performance Results . . . . . . . . . . . . . . . . . . 33
6.2.2 Communication Direction Imbalance Results . . . . . . . . . . . . . . 35
6.2.3 Scalability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusion 39
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41



List of Figures

2.1 D3Q19 stencil [29] representation. The arrows represent the 19 stencil directions
(center position is zero), with each arrow representing a neighboring cell in the
corresponding direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Representation of the simulation domain for the 3D lid-driven cavity problem [10]. 8
2.3 Ghost layer communication from a source (Process i) to a destination (Process j)

process. Data is packed from the boundary layer of the field into the send buffer.
Then, buffers are exchanged via MPI and the destination process unpacks the
data from the receive buffer into the ghost layer of the destination field. . . . . 11

4.1 Timeloop setup with inner and outer kernels. Outer kernel compute boundary
points of the block, while inner kernel computes inner points of the block.
One CUDA stream is used for the inner kernel, and a stream is used for each
neighboring process, which is represented by Stream i . . . . . . . . . . . . . . 25

5.1 Representation of the xz and yz block decompositions, from left to right. Initial
block has the blue color, the second block in the decomposition is depicted with
the color green. The last two blocks for the decomposition with 4 blocks, are
depicted with the color red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Streamlines for the converged solution of the lid-driven cavity problem. . . . . 32
6.2 Velocity profiles for x and z components (Vx and Vz, respectively) at the y-

midplane, compared with reference values from the literature [10, 34]. . . . . . 33
6.3 Performance comparison of the state-of-the art communication scheme, with the

proposed solutions. Results are measured for increasing cubic block sizes. The
experiment was performed on 4 Kepler nodes and the domain decomposition in
this case is (x = 1,y = 2,z = 2). . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 Performance comparison of the state-of-the art communication scheme, with
the proposed solutions, using MVAPICH2 2.3 with CUDA support. Results are
measured for increasing cubic block sizes. The experiment was performed on 2
NVIDIA GeForce Titan X GPUs of the VRI group’s server (single node) and
the domain decomposition in this case is (x = 1,y = 1,z = 2). In this case, only
intra-node GPU communication is performed. . . . . . . . . . . . . . . . . . . 35

6.5 Communication direction imbalance results for the proposed communication
solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.6 Results of the weak scaling experiment for a cubic domain size of 256 cells, for
the xz and yz domain decomposition directions. . . . . . . . . . . . . . . . . . 37

6.7 Results of the strong scaling experiment for a cubic domain size of 256 cells, for
the xz and yz domain decomposition directions. . . . . . . . . . . . . . . . . . 38



List of Tables

5.1 Hardware and software characteristics for GPU nodes with Kepler and Fermi
devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



List of Acronyms

API Application Programming Interface
BGK Bhatnagar-Gross-Krook Model
CFG Computational Fluid Dynamics
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DINF Departamento de Informática (Department of Computer Science)
DMA Direct Memory Access
DRAM Dynamic Random-Access Memory
ECC Error-correcting Code
GbE Gigabit Ethernet
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
HPC High-Performance Computing
IB Infiniband
LBGK Lattice Bhatnagar-Gross-Krook Model
LDC Lid-Driven Cavity
LBM Lattice Boltzmann Method
MFLUPS Million Fluid Lattice Updates per Second
MLUPS Million Lattice Updates per Second
MPI Message-Passing Interface
MRT Multiple Relaxation Time
NUMA Non-Uniform Memory Access
NVCC NVIDIA CUDA Compiler
P2P Peer-to-peer
PCIe Peripheral Component Interconnect Express
PDF Particle Distribution Function
RDMA Remote Direct Memory Access
SRT Single Relaxation Time
UFPR Universidade Federal do Paraná (Federal University of Paraná)
waLBerla Widely Applicable Lattice Boltzmann from Erlangen



List of Symbols

ρ Macroscopic fluid density
ν Macroscopic fluid viscosity
∆x Lattice cell spacing in the x-direction
t Current time step
∆t Time step size
Ωα Lattice Boltzmann collision operator
cs Speed of sound
τ Lattice Boltzmann relaxation parameter
~u Discrete lattice velocity
~e Stencil direction vector
g Thickness of the ghost layer



1

Chapter 1

Introduction

High-Performance Computing (HPC) consists in aggregating computer resources to
achieve a much higher performance than of a single desktop or server could deliver. Advances
in HPC technologies and techniques over the years, allowed scientists and engineers to tackle
even more complex problems, on unprecedented scales. Computational Fluid Dynamics (CFD)
is one of the fields that greatly benefits from these advances, and is particularly important for the
numerical simulation of physical phenomena.

A list of the high-end supercomputers in the world is organized in the TOP500 list [39].
Most supercomputers in the list are based on a cluster architecture, in which the application
is parallelized using a distributed paradigm, often using a message-passing scheme. In the
distributed paradigm, computations are performed by independent processes running on the
nodes of the cluster, and data is exchanged through message-passing. These computing nodes
are usually interconnected in a local area network with fast, low-latency network technologies,
such as Gigabit Ethernet (GbE) or Infiniband (IB).

Graphics Processing Units (GPUs) have evolved into scalable parallel processors, with
the introduction of general-purpose computation APIs, such as CUDA [27]. Advances in GPU
performance, price and energy consumption in each new generation, specially for floating-
point computations, make these processors appealing to high-end HPC systems, since they
can accelerate application performance considerably. According to the TOP500 list [39], as of
November of 2016, 21 of the top 100 supercomputers utilize NVIDIA GPUs. Ranked among
the top 10 systems that use GPUs are the Titan (3rd position) and Piz Daint (8th position)
supercomputers.

Although using GPUs as accelerators or main computation units in supercomputers
have many advantages, achieving optimal performance is challenging. Since GPUs introduce
their own memory space, often separated from the host CPU memory, communication strategies
usually have to rely on staging data through the CPU as an intermediate step. Staging data
through the host introduces additional overhead and latency to communication, reducing overall
efficiency. Solutions have been proposed to remediate the problem (e.g. GPUDirect [26]),
however efficient communication strategies are still necessary to obtain optimal performance.
Therefore, improving communication performance and achieving a good balance between
computation and communication are still subject of study and discussion.

Several methods for numerical simulation of Computation Fluid Dynamics (CFD) prob-
lems have been proposed [7, 15]. Stemming from gas cellular automata, the Lattice Boltzmann
Method is one of the most widely accepted methods in academia and industry to numerically sim-
ulate CFD problems involving incompressible flows [11]. The method has gained increasingly
importance, because it can take advantage of massively parallel supercomputers.
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HPC software frameworks drastically reduce the development time and effort of appli-
cations. waLBerla [14] is a HPC framework for multi-physics simulations, which was originally
designed for LBM applications. The framework provides data structures and routines that ease
the development of HPC applications. Although waLBerla supports a wide range of physical
phenomena and runs on some of the top 10 supercomputers in the world, its GPU communication
infrastructure still needs to be further improved to achieve optimal performance.

In this thesis, a new communication infrastructure that bypasses host-based data staging,
and extensions to the state-of-the-art GPU communication infrastructure of the waLBerla frame-
work are presented. The main goal is to improve the performance and usability of the framework
in GPU-based supercomputers.

1.1 Objectives
In general, the objectives of this thesis are:

• Evaluate different GPU communication strategies, accounting for different communication
scenarios: inter-node, intra-node and intra-GPU.

• Hide communication latency by overlapping communication and computations.

• Provide a flexible mechanism for GPU memory alignment, in order to exploit the underly-
ing hardware characteristics.

• Improve walBerla’s performance and usability on modern GPU-based supercomputers.

1.2 Contributions
The main contributions of this thesis to the HPC field are:

• An extension to the state-of-the-art GPU communication infrastructure, such that it can
take advantage of CUDA concurrency mechanisms.

• A novel GPU-to-GPU communication infrastructure for stencil-based applications, which
can make use of CUDA support in modern MPI implementations, thus avoiding data
staging through host memory.

• Support for all field memory layouts in the GPU communication infrastructure of the
framework.

• A significant performance increase in GPU-based LBM simulations using waLBerla.
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Chapter 2

Background

In this chapter, we present the background for the solutions presented in this work.
First, a brief overview of the architecture of modern GPUs is presented. Then, CUDA, MPI as
well as CUDA-aware MPI are introduced. The lattice Boltzmann method (LBM) and a relevant
benchmark problem, the 3-D lid-driven cavity, are briefly presented. Finally, an overview of the
waLBerla framework is presented, with the most relevant details of its architecture.

2.1 GPU Architecture
A GPU is a multiprocessor comprised of several multi-threaded SIMD processors (also

called streaming multiprocessors or SMs). GPU designs, contrary to CPUs, use most of the die
area for several parallel processing units and specialized memories for graphics applications
(e.g. texture memory), rather than big caches and control flow logic [24]. The main assumption
in GPU designs is that applications have so many threads, that multi-threading can both hide
the latency to global memory and increase the utilization of multi-threaded processors [30].
GPUs are particularly well-suited to data parallel and high arithmetic intensity problems, since
the multi-threaded design of streaming processors allow for multiple concurrent threads to
be executed independently on data elements, and the presence of multiple floating-point and
special-purpose units increase the throughput of numerical computations.

In NVIDIA GPUs, parallel threads are scheduled in groups of 32 threads1, which are
called warps. There are two types of hardware schedulers: a warp scheduler and a thread block
scheduler. A warp scheduler is a hardware scheduler, present in each streaming multiprocessor,
which keeps track of instructions’ status using a scoreboard, and schedules warps of threads
when the instructions are ready for execution, thus exploring instruction-level parallelism (ILP).
The thread scheduler is a hardware scheduler at the GPU level, which assigns and keeps track of
blocks of threads in the multiprocessors, until kernel execution is completed.

As previously mentioned, besides multiple parallel execution units, GPUs employ
different types of memories, mainly because of graphics applications. Threads may access data
from any of these types of memories. The memory hierarchy is composed of:

• Global memory: stored in external DRAM, divided in several banks and is accessible by
all SMs.

• Shared memory: used for thread block communication and is only visible within the same
thread block, i.e. threads in the same SM.

1Assuming there is no divergence in the control flow.
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• Local memory: per-thread local memory is private and only visible to a single thread.
Local memory is allocated to external DRAM, in order to support larger allocations, and
can be cached on-chip.

• Constant memory: read-only to a program running on the SM, it is stored in external
DRAM and cached in the SM.

• Texture memory: holds large read-only arrays of data. Textures are cached in a streaming
cache designed to optimize throughput of texture fetches from concurrent threads.

2.2 CUDA
Compute Unified Device Architecture (CUDA) is a scalable general-purpose parallel

computing platform and programming model [24]. It eases programming and usage of GPUs for
general computations, through extensions to the C, C++ and Fortran programming languages.
There are three main abstractions in CUDA: a hierarchy of thread groups, shared memories and
barrier synchronization.

GPU hardware has schedulers to handle parallel execution and thread management, it
is not done by applications or the operating system. To simplify scheduling by the hardware,
CUDA requires that thread blocks be able to execute independently and in any order.

Computation on the GPU is started by issuing kernels. Kernel is a code or function that
executes on the GPU, and each kernel spans a grid. A CUDA grid is a group of thread blocks, and
thread blocks are groups of threads, making use of the parallelism provided by GPU hardware, as
described in Section 2.1. Grids and thread blocks can be one, two or three dimensional. Cache,
grid and thread block configurations can be changed before each kernel call.

2.2.1 GPUDirect
GPUDirect is a set of CUDA features and extensions to the CUDA driver, which reduces

data movement overhead when multiple GPUs or network adapters are utilized. There are three
main features provided by GPUDirect: peer-to-peer memory access, peer-to-peer memory copies,
and remote direct memory access (RDMA). Peer-to-peer (GPUDirect P2P) memory accesses
and copies can only be used if the devices are in the same PCIe root complex [26, 25], and the
same applies to RDMA operations with network adapters. GPUDirect RDMA consists in direct
memory copies between GPU devices and Infiniband network cards, effectively bypassing host
memory for data transfers between nodes [32].

The first version of GPUDirect was released in 2010, and allowed GPUs and network
adapters to share the same pinned memory region on host memory, thus eliminating the need
for one intermediate copy on the host side. GPUDirect Peer-to-peer was introduced in CUDA
Toolkit version 4 (2011), and allows efficient DMA transfers between GPUs sharing the same
PCIe root complex, as well as peer-to-peer memory accesses (similar to NUMA) within CUDA
kernels. GPUDirect RDMA was introduced in the CUDA Toolkit version 5 (2012), and enables
remote direct memory access (RDMA) transfers between GPUs and other PCIe devices, reducing
memory copy overhead for inter-node communication.

2.2.2 Concurrency Mechanisms
In order to explore further parallelism in the GPU, CUDA offers concurrency mecha-

nisms in the runtime API, which allow the programmer to launch asynchronous and concurrent



5

operations to the same device. These mechanisms were further extended by the introduction
of HyperQ, which allow different threads to control and issue work to a given device. GPU
hardware also provides different queues for operations, two for memory transfers in different
directions and one for computing, which can be used to overlap asynchronous memory copies
with computation.

Concurrency is exposed in CUDA through streams, which is a sequence of operations
that execute in issue-order on the GPU. Operations in different streams may run concurrently
or be interleaved, when there are resources available, no dependencies and no synchronization
constructs. Explicit synchronization can be performed with streams and events, besides syn-
chronization of the whole device. Other operations might also implicitly synchronize all other
CUDA operations, such as memory allocations, synchronous memory copies and change to
cache configuration.

2.3 MPI
MPI is a message-passing interface specification [13], that is standardized by a com-

munity of different stakeholders, e.g. parallel computing vendors, application developers and
researchers. MPI stands for Message Passing Interface and it is one of the most utilized standards
for distributed-memory parallel programming. The distributed-memory model of parallelization
consists in message exchanges between a set of processes over a network or shared memory, i.e.
a process cannot directly access another process’ memory, so they must exchange data through
messages. Several MPI implementations are available, actively maintained and in widespread
use. Some implementations require licensing and are closed-source [19, 9], while others are
open-source and maintained by a community [42, 22, 41].

All processes taking part in a parallel computation can be distinguished inside a com-
munication group by a unique identifier called rank. The same program runs on all processes,
and is written in a sequential language, i.e. C or Fortran [13, 18]. Processes are grouped in
communicators, and a default communicator is assigned to all processes on the initialization
phase. Different communication patterns and topologies are supported by MPI. Communication
can be point-to-point (using sends and receives), one-directional (put and get) or collective
(broadcast, reduction, gather and scatter). Virtual topologies are also supported, for example,
cartesian grids, hypercubes or graphs.

2.3.1 CUDA-aware MPI
CUDA-aware MPI is a implementation of the MPI standard that allows the use of

GPU memory [21], e.g. pointers allocated by the CUDA runtime, with MPI operations and
datatypes. After the introduction of Unified Virtual Addressing (UVA) in CUDA 4.0, MPI
implementations were able to integrate support for GPU pointers (and hence, buffers). UVA
allowed for mapping of host and device memory allocations to the same virtual addressing space,
and that in turn allowed host and device pointers to be distinguished through queries to the
CUDA runtime API, which keeps track of GPU memory allocations. Through these pointer
queries, the MPI implementation can handle data movement and other operations transparently,
with the appropriate functions for host and device.

Optimizations to the underlying algorithms in MPI implementations have already been
proposed in the literature [32, 33, 43, 8], with most of them implemented in MVAPICH2 [22, 44].
These optimizations improve the performance of CUDA-MPI programs, and allow the MPI
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implementation to take advantage of advanced CUDA features such as GPUDirect P2P and
RDMA. More details on some of these optimizations are presented in Section 3.

2.4 Lattice Boltzmann Method
The Lattice Boltzmann Method is an alternative to Navier-Stokes solvers (e.g. staggered

grid) for incompressible flows, which satisfies the Navier-Stokes equations in the macroscopic
limit with second order accuracy [7, 40]. It is based on a velocity discrete Boltzmann equation
with an appropriate collision term. In 3D simulations, the simulation domain is typically
discretized into a uniform cartesian grid [14]. In general, the Lattice Boltzmann equation can be
written as

fα (xi + eα∆t, t +∆t)− fα (xi, t) = Ωα ( f ) (2.1)

with xi denoting the i-th cell in the discretized simulation domain, eα denoting the dimensionless
discrete velocity set {eα |α = 0, . . . ,N−1}, t denoting the current time step, ∆t denoting the time
step size, and Ωα( f ) denoting the LBM collision operator. Algorithmically, the LB equation is
typically separated into a collision (2.3) and a streaming step (2.2):

f α(xi, t) = fα(xi, t)+Ω( fα) (2.2)

fα(xi + eα∆t, t +∆t) = f α(xi, t) (2.3)

with f α denoting the post-collision state of the distribution function.
In this thesis, we use a D3Q19 model, as shown in Figure 2.1, with a single-relaxation-

time (SRT/LBGK) model, introduced by Sepka et. al [37] and implemented by Carvalho et. al
[10], which is given by

Ωα( f ) =−1
τ

(
fα(xi, t)− f (eq)

α

)
(2.4)

where τ is the relaxation time and f (eq)
α (xi, t) is the equilibrium distribution.

The equilibrium distribution is given by equation (2.5):

f (eq)
α = ρwi

[
1+

3
c2~ei ·~u+

9
2c4 (~e ·~u)

2− 3
2c2 (~u ·~u)

]
(2.5)

where ρ and~u are the macroscopic density and velocity obtained from the 0th and 1st moments
of the particle distribution function fi with regard to the discrete velocity~ei

ρ =
18

∑
i=0

fi(~x, t) ρ~u =
18

∑
i=0

~ei fi(~x, t)

where wi are direction-dependent constants, given by Equation (2.6), for the D3Q19 model.

wi =


12/36, for i = 0.
2/36, for i ∈ [1, . . . ,6].
1/36, for i ∈ [7, . . . ,18].

(2.6)
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Figure 2.1: D3Q19 stencil [29] representation. The arrows represent the 19 stencil directions
(center position is zero), with each arrow representing a neighboring cell in the corresponding
direction.

c is the discrete lattice velocity, given by c =
∆x
∆t

, where ∆x is the lattice spacing and ∆t is the
time step size. The pressure p and kinematic viscosity ν are given by

p = csρ ν =
1
6
(2τ−1)∆x c

where cs = 1/
√

3 is the speed of sound and τ is a relaxation parameter.

2.5 Lid-Driven Cavity Problem
The lid-driven cavity problem is one of the most important benchmarks for numerical

Navier-Stokes solvers and Lattice-Boltzmann methods [2]. Its importance stems from a simple
driving of the flow using a tangential motion of a single lid at the top of the domain, using a
constant velocity. Moreover, it is very simple, since it uses a regular square or cubic geometry for
the domain and exhibits several interesting physical properties, such as the formation of eddies
and counter-eddies [15].

In the lid-driven cavity problem in three dimensions, the physical setup consists in a
cubic container filled with a fluid. The lid at the top of the container moves at a given, constant
velocity, thereby setting the fluid in motion. No-slip conditions are imposed on all five segments
of the boundary, with the exception of the top boundary, along which a velocity in the x-direction
is not set to zero, but equal to the given lid velocity to simulate the moving lid. A representation
of the problem is shown in Figure 2.2.

2.6 waLBerla Framework
waLBerla is a massively parallel software framework for multi-physics simulations. It

was initially developed for simulation of fluid flows using the lattice Boltzmann method (LBM),
hence the acronym waLBerla, which stands for “widely applicable lattice Boltzmann from
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Figure 2.2: Representation of the simulation domain for the 3D lid-driven cavity problem [10].

Erlangen”. Over time, the framework evolved into a general HPC framework for algorithms that
utilize block-structured grids [3].

Through fully distributed data structures, it reduces the memory footprint of multi-
process simulations. It also offers efficient algorithms for input and output of simulation data,
domain partitioning and load balancing [14]. WaLBerla has two primary design goals: being
efficient and scalable on current supercomputer architectures, while at the same time being
flexible and modular to support different applications [12].

2.6.1 Application Structure
In waLBerla, users can construct their simulations in terms of operations, and several

routines are already provided for geometry and simulation setup, communication, visualization
and post-processing. Thus, it reduces the overall time and effort required to setup a simulation
pipeline, allowing the user to focus solely on the application they want to simulate.

Below is a list of basic operations that are performed in a waLBerla application:

1. Creation: First step in the application, it usually sets up the block structure and performs
the domain decomposition to the requested number of processes, by reading the configured
number of processes either via Python [3] or through another configuration file format (e.g.
a .prm file).

2. Initialization: In this step the initial domain quantities (e.g. particle distribution functions),
domain obstacles, and other relevant aspects of the simulation are created.

3. Operation definition: An operation usually extracts block data from the block structure
through the use of a block identifier. Operations execute over a block at a time, and
they perform the actual computations of the simulation. For example, boundary handling
and lattice Boltzmann codes are defined as different operations, they extract block data
representing the simulation domain, and operate on it.
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4. Simulation loop: Operations are added to a timeloop, which executes each operation over
all blocks. The simulation loop represents the time stepping (advance the simulation with
respect to time), which is very common in physical applications.

2.6.2 Framework Architecture
In this section, an overview of the relevant classes and data structures of the waLBerla

framework are presented. The framework provides classes and functions that ease the develop-
ment of HPC applications, while maintaining performance. A description of each relevant class
is given below:

• IBlock: Base class for blocks, which defines basic operations for all types of blocks that
might be implemented in the framework. Blocks are rectangular subsets of the simulation
domain, i.e. the simulation is partitioned into one or more blocks. They also have an
internal state and the framework design allows them to hold any kind of data. Therefore, a
block can hold a flag field as well as a velocity field, for example.

• StructuredBlockForest: Manages the block structure, providing mechanisms for setting
bounding boxes on the domain, grid refinement strategies, the physical size of each cell in x,
y and z dimensions. It also provides mechanisms to convert between physical coordinates
to simulation coordinates, and vice-versa.

• Field: A 4-D (x, y, z, f) data container, which uses contiguous memory to provide access
to its data members. These members can be accessed regardless of the simulation’s current
time step. It supports two memory layouts2: array-of-structures (AoS), structure-of-arrays
(SoA). In the array-of-structures (AoS or fzyx) layout, f is the slowest changing dimension,
followed by z and y, and x is the fastest changing dimension. The structure-of-arrays (SoA
or zyxf) layout has the z dimension as the slowest changing dimension, followed by y and
x, and f is the fastest changing dimension.

• GhostLayerField: It is an extension of the Field class, adding the ghost layers, which
are required for algorithms that rely on ghost layer based communication. The number of
ghost layers can be adjusted on the initialization phase of the application, depending on
the requirements of the latter.

• GPUField: This class is an implementation of the GhostLayerField class for CUDA
GPUs, therefore making use of CUDA runtime functions and data structures for memory
management. It supports the same memory layouts as the Field class (which is the parent
class of GhostLayerField), and has functions to perform copies between CPU and GPU
memory.

• Kernel: Wrapper class around a CUDA kernel. When CUDA support was introduced
in waLBerla, the nvcc compiler did not support C++11 functionalities, which are used
extensively in the framework. Using this wrapper, it is possible to compile CUDA-specific
code separately with nvcc, while the rest of the code can be compiled with other compilers.

• FieldIndexing: This class implements an indexing scheme, which map field coordinates
(x, y, z, f) to CUDA’s threads and blocks. FieldIndexing maps all the elements of the
innermost field coordinate within a thread block, as a mean to provide coalescent access to
field data.

2Which are also called linearization strategies in the documentation.
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• FieldAccessor: The FieldAccessor class is instantiated by the FieldIndexing, and provides
transparent access to the GPUField data within the CUDA kernels. It computes the
GPUField index for each thread, depending on the indexing strategy defined by the field
indexing.

• BlockSweep: This is a functor class that must be implemented by the user, and operates
on a block at a time. The framework traverses the block structure, passing each block’s
pointer to BlockSweep::operator() function. Any name can be used for this class, which is
chosen by the user.

• SweepTimeloop: This class represents a loop with time stepping, which executes a
collection of sweeps. Sweeps are functions that operate on a single block, and the
framework provides a pointer to the block. With the block, the user can extract any
registered data (e.g. velocity field). Before and after functions can also be defined for each
sweep. Multiple sweeps are also supported for a given time loop.

• UniformPackInfo: This is an abstract class that provides the interface for insertion and
extraction of data from blocks. Therefore, it enables communication between neighboring
blocks. Other PackInfos must be derived from this class and implement concrete functions
for its abstract interface. This ensures compatibility with the communication algorithms
already implemented in waLBerla.

• PackInfo: Concrete implementation of the UniformPackInfo class, providing functions to
insert and extract data from a determined type of block. It can be used, for example, to
insert and extract information from blocks that reside on the GPU (GPUField).

• UniformBufferedScheme: This class implements the communication algorithm for uni-
form block grids. It implements the MPI communication for neighboring blocks, specif-
ically when these blocks have to be communicated all at once. For example, one can
synchronize multiple ghost layers fields in a single step, by exchanging data with processes
that hold neighboring blocks’ data. To extract and insert data from and into the blocks, the
user can register one or more PackInfo’s, depending on the data that has to be communi-
cated. The communication process, which is also called ghost layer communication, is
depicted in Figure 2.3.

• SendBuffer: Wrapper class for MPI send buffer, providing convenience functions for
adding and manipulating data within the underlying MPI buffer.

• RecvBuffer: Wrapper class for MPI receive buffer, also providing a set of convenience
functions to extract and manipulate data within the underlying MPI buffer.
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Figure 2.3: Ghost layer communication from a source (Process i) to a destination (Process j)
process. Data is packed from the boundary layer of the field into the send buffer. Then, buffers
are exchanged via MPI and the destination process unpacks the data from the receive buffer into
the ghost layer of the destination field.
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Chapter 3

Literature Review

3.1 Optimized Kernels
In this section, a literature review of works focused on single block GPU simulations

with optimized lattice Boltzmann method (LBM) kernels is presented.
Obrecht et. al [29] applied optimization techniques to a D3Q19 lattice Boltzmann

method implementation on GPUs using global memory. Using a structure-of-arrays (SoA)
type of data organization, and propagation performed through global memory transactions, the
GPU LBM kernel achieved almost 90% memory bandwidth usage. Two schemes with different
collision operators were tested: LBGK (Lattice Bhatnagar-Gross-Krook) with a split (push
scheme) and a reversed scheme of propagation (pull scheme) using MRT (Multiple Relaxation
Time). Separate source and destination lattices were used in global memory to avoid overwrites,
and they were alternated in each time step.

A lid-driven cavity was used for both physical validation and for performance mea-
surements. Physical validation was performed on lines in the z-axis, with x,y = L/2 (L was the
lattice size in one direction) and x-axis with y = L/2 and z = L/2. For a Reynolds number of
1000, LBGK code outcomes were in good accordance with the reference values and MRT imple-
mentation achieved almost perfect correspondence. Compared to the LBGK model, the more
stable and accurate MRT, despite its higher computational cost, yields equivalent performance
on GPUs. LBM was shown to be limited by global memory bandwidth on GPUs, achieving up to
86% of the maximum attainable bandwidth on a NVIDIA GTX 295 GPU. Performance achieved
on both schemes and models was between 470 and 500 MLUPS for lattice sizes varying between
643 and 1603 cells.

Habich et. al [17] established a model to estimate the upper bound on the performance
of a lattice Boltzmann method implementation on GPUs. The implementation consisted in
a D3Q19 lattice Boltzmann method with the BGK collision operator. An upper bound for
performance was established using the vector triad from the STREAM benchmark [23] on a
NVIDIA 8800GT and GTX 200 GPU. Domain lattice was stored as a structure of arrays (SoA) to
allow global memory coalescing, and each CUDA thread was assigned one domain cell. In order
to avoid misaligned writes to global memory, which would impose a big performance penalty,
particle distributions were temporarily stored to shared memory and synchronized, before they
could be written using coalesced, aligned stores.

Performance estimate was met for both GPU models using specific domain sizes. Also,
to ensure coalescent access on domain sizes that were not divisible the warp size, a padding
strategy was employed, and the 128-byte alignment was determined to be the best alignment size.
Memory bandwidth was improved by 30% on the GT200, in comparison with the 8800GT. Even
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though the performance of the GPU implementation was higher than that of the CPU version for
single precision, the same was not true for double precision, especially considering the effort
required to implement the CUDA version.

Rinaldi et. al [34] presented a lattice Boltzmann method based in a single-loop pull
scheme using 19 discrete velocities in three dimensions. Validation and performance tests
consisted in running a 3D lid-driven cavity simulation. Validation with Reynolds numbers of
100 and 1000 were conducted for the GPU implementation. Results were in conformance with
the literature for velocities on the x and y components in the z-axis mid-plane. Global memory
accesses were coalesced and reduced by storing values of x-axis adjacent in memory and using
shared memory, respectively.

Performance of the GPU version was compared to a single thread CPU implementation,
with grid accesses on the latter implementation optimized for cache-based architectures. However,
CPU and other software specifications (such as compiler optimization level) were not provided.
The GPU version was executed on a NVIDIA GTX 260 GPU. Both implementations utilized
single precision floating-point numbers. Domain sizes between 163 and 1603 cells were tested
on both CPU and GPU, their performance in MLUPS measured and compared. GPU LB
implementation was 92 to 130 times faster than its CPU equivalent and with some optimizations,
it was possible to obtain 400 MLUPS performance, with 65% of effective memory bandwidth of
the GPU utilized.

Extending the work on [16], Habich et. al [16] optimized the D3Q19 lattice Boltzmann
method implementation on GPUs further, using CUDA and adapted the implementation to
OpenCL as well. An upper bound on performance was established for three different device
models, using the STREAM benchmark [23]. Two grids were used to eliminate data dependen-
cies, and further optimizations were applied to reduce the number of registers utilized by the
stream-collide kernel. Data was stored in a structure of arrays (SoA) layout, and usage of shared
memory was shown not to be advantageous. Memory padding was shown to be particularly
important on some GPU models, especially when ECC was enabled.

Utilization of ECC in the simulation showed a loss of 10% to 18% in performance.
LBM kernels were able to sustain 83% of available memory bandwidth, in single precision and
with ECC disabled. Those kernels also gave a speedup of two compared to a highly optimized
CPU implementation in a full socket Intel Xeon server. The OpenCL version was on par with its
CUDA equivalent in terms of performance on the GPUs studied, however more optimizations
are required to execute the same implementation on the CPU, since the compiler did not utilize
SIMD instructions when generating the code.

3.2 GPU Communication
In this section, a literature review of works focused on GPU communication and

multi-GPU simulation approaches are presented.
Jacobsen et al. [20] implemented a incompressible fluid flow simulation using the

Navier-Stokes equations along with a temperature equation to model buoyancy effects. Pressure
equation was solved using a Jacobi iterative solver, and a projection algorithm was utilized to
solve the discretized Navier-Stokes equations. Single precision was used in all computations.
Implementation was validated using cubic lid-driven cavity and natural convection in heat cavity
problems. Results agreed with benchmark data and other results reported in the literature.

The 3D cartesian staggered grid was decomposed into 1D layers, which eliminated the
need to gather and scatter data in non-major dimensions of the grid, even though the size of data
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to communicate increases faster on 1D decompositions as the number of nodes increase. Compu-
tations were overlapped with inter- and intra-node communication. Three implementations were
tested: non-blocking MPI with no overlapping of computation, overlapping computation with
MPI, and overlapping computation with MPI communication and GPU data transfers.

Performance and scalability tests were performed in the NCSA Lincoln cluster, where
each node had two Intel quad-core processors operating at 2.33GHz, 16GB of RAM and two
NVIDIA Tesla Tesla C1060 GPUs. Scalability experiments were performed with the lid-driven
cavity problem with a Reynolds number of 1000. Overlapping implementations showed improved
performance and parallel efficiency. When the workload per GPU was small, network latency
dominated the simulations and the overlapping implementations could not hide communication
overhead. Finally, weak scalability experiments were able to achieve 2.4 TFLOP/s on 128 GPUs.

Playne et al. [31] simulated a Cahn-Hilliard equation using a discretization obtained
with a finite difference method, with second order accuracy. Cahn-Hilliard systems are used
for simulations of phase separation in materials science. Domain field was decomposed into
layers in the highest dimension (y in 2D, z in 3D), split into equal layers and spreaded across the
GPUs in each node of the GPU cluster. Computation was overlapped with communication by
computing boundary points and exchanging them asynchronously, while computing inner points
of the domain field.

Two algorithms were proposed, which differed in their pattern of communication: bi-
directional and one-directional communication. Intra-node performance was shown to scale
almost linearly on a machine with four NVIDIA GTX480 GPUs for both communication
schemes. Evaluation was performed on a cluster of 16 desktops with Intel Core 2 Quad Q9400
processors and NVIDIA GTX470 GPUs. Performance for the bi-directional algorithm showed
unreliable performance and did not scale well. Uni-directional algorithm provided more reliable
results and scalable performance. The uni-directional algorithm showed a speedup of almost 2x
over a single GPU with two nodes, but such gains did not scale. In the three dimensional case,
communication time outweighed the computational gain of more nodes.

Xian et al. [45] performed scalability and performance experiments with a D3Q19
lattice Boltzmann simulation, on the multi-node GPU cluster Tsubame. The computation of a
lid-driven cavity flow problem in single precision with 963 lattice nodes using a single NVIDIA
Geforce GTX280 was tested and a performance of 270 MLUPS was measured, which was
87 times faster than its CPU equivalent. Further details of the CPU implementation were not
provided, apart from the processor model.

Data communication process was carried out by staging memory copies through the
host. Distinct domain partitions were also utilized, because data size for communication greatly
decreases with the increase in the number of ranks (GPUs) for 2D and 3D partitionings. Using
1D partitioning, the performance does not scale with a higher number GPUs, which was not
the case for 2D and 3D decompositions. With the same partitioning, performance for 3843 was
half than that of 7683, because of higher GPU load. Communication time decreased for 2D
and 3D partitioning and increased for the 1D case. Overlap of computation and communication
was achieved by using a CUDA stream for inner point computation, and another for boundary
computations and communication. It was verified that using overlapping mode, performance
increased by at least 8% (on 96 GPUs). Also, the computational time was smaller in the
overlapping mode.

MVAPICH2-GPU design was proposed by Wang et al. [44] to support efficient GPU to
GPU communication using MPI transparently. Through such design, it is possible to pipeline
GPU memory copies with RDMA data transfers inside MPI. The proposed approach was shown
to improve the performance even when compared with an optimized pipelined implementation at
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the user application level, thus eliminating the need for the use of such technique, since the MPI
library itself is more efficient at pipelining.

Evaluation of the proposed design was performed in two clusters, one with GPUDirect
RDMA and the other without. The first cluster was composed of 8 nodes with Tesla C2050
GPUs and Mellanox QDR interconnect. As for the second cluster, it consisted in 256 nodes,
with two GPUs per node and Infiniband QDR interconnects. All experiments were conducted
with the OSU microbenchmarks for one-sided, point-to-point and collective communication
operations. One process was run per node and one GPU was used per process for all experiments.
When GPUDirect was present, an improvement of up to 45% was achieved in point-to-point
latency for a message size of 4MB. The same improvement was also observed with one-sided
communication. Improvements of up to 37% were also achieved with collective operations.

Wang et al. [43] implemented a new design for enabling high-performance communica-
tion support between GPUs for non-contiguous datatypes. Through the MPI datatype concept,
(un)packing data was made possible between GPUs, utilizing a pipelined approach to improve
communication performance and overlap between data copies and network transfers. Part of
(un)packing dataype processing was offloaded to the GPU, which was in contrast with CPU
based approaches. Evaluation of the proposed design was shown to improve the latency of
communication up to 88%, for 4MB vector data messages. Data movement was performed using
a packing operation from non-contiguous to contiguous data inside the GPU, then asynchronous
copies of the GPU data to the CPU were issued in chunks and communicated. Packing and
unpacking latency of non-contiguous data was shown to dominate the pipeline performance.

Experiments were carried out on cluster with eight nodes. Each node was equipped
with dual Intel Xeon Westmere CPUs operating at 2.53GHz, 12GB RAM, NVIDIA Tesla C2050
GPUs and Mellanox Infiniband QDR interconnect. Three different designs were evaluated:
a blocking one, both on MPI and memory copies, a non-blocking design with pipelining at
the application level, and the proposed solution. Non-blocking and proposed solution designs
had similar performance, since their principles of implementation were the same, however
the proposed solution was integrated into the MPI library, which reduces code complexity for
applications. A 2D stencil benchmark was also performed, with improvements from 20% to 40%
were reported for different process grid configurations.

Potluri et al. [33] introduced a design for intra-node MPI communication on multi-GPU
nodes, taking advantage of IPC capabilities provided in CUDA. Using IPC memory handles,
processes can map memory regions belonging to other processes in the same node. Since IPC
handle creation and destruction generate severe overhead, a cache was designed to alleviate the
cost of handle management. CUDA IPC allows for peer-to-peer communication between GPUs,
bypassing host memory, as long as the devices are in the same bus.

A node with a 12-core Intel Westmere node, with 24GB of RAM and two NVIDIA Tesla
C2075 GPUs was utilized in the experiments. All experiments were run using two processes,
where each process was mapped onto a different socket and each used a different GPU device.
Experimental evaluation have shown that the new designs improved two-sided GPU-to-GPU
communication latency by up to 79% and can quadruple the bandwidth, for 4 MB messages.
One-sided communication latency was also improved by 74% improvement. Using multi-GPU
lattice Boltzmann application, a 16% improvement in time steps was verified for 512x512x64
grid, using either one or two-sided communication.

Bernaschi et al [5] presented development techniques of multi-GPU codes for mesh
based simulations. By using two different streams for communication and computation, com-
munication latency could be completely hidden by computations, provided that the time for
computations was long enough. Two different communication strategies were evaluated: naive
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and overlap. The naive communication scheme consisted in performing the communication,
boundary and computation steps serially, on the same CUDA stream. Overlap communication
scheme used two CUDA streams concurrently, with one stream for communication, boundary
handling and outer point computations, and the other for bulk (inner domain point) computations.
Two MPI implementations were tested, in order to compare their performance and GPU-aware
capabilities.

Tests were conducted on two different clusters with similar platforms and processors.
The first machine consisted in a single node with 8 NVIDIA Tesla C2050 GPUs connected to 2
PCIe buses (4 GPUs per bus), and the second one consisted in three nodes with 2 NVIDIA Tesla
C2070 GPUs and QDR Infiniband interconnect among nodes. Parallel efficiency and GFLUPS
performance were measured for a 3D Heisenberg Spin Glass and the Himeno benchmark. Parallel
efficiency for the overlap version, with or without CUDA-aware MPI support, increased from
70% to almost 99% using 4 GPUs. GPU-aware MPI implementations seemed to interfere with
CUDA streams in a way that prevented computation and communication to overlap efficiently.

A hybrid parallel GPU implementation of the lattice Boltzmann method was presented
by Xiong et al. [46], making use of the iD2Q9 stencil. In order to improve performance,
communication was executed asynchronously with computations, through the use of CUDA
streams. Boundary handling and communication were carried out in one stream and computation
of inner points in another stream. MPI was utilized to extend the code for multiple GPUs in
separate nodes and OpenMP to improve performance of intra-node communication. In this
work, it was not stated- which MPI implementation or version was utilized. Data transfers for
communication were performed by staging data through host memory.

Results were obtained for a cluster of 362 nodes, with each node containing two quad-
core CPUs, six NVIDIA Tesla C2050 GPUs and QDR Infiniband interconnect. Validation of the
implementation was obtained through the analysis of a two-dimensional Couette flow, which
was utilized to evaluate the accuracy of the GPU implementation. The domain size chosen
was 2048x2048 and Reynolds number of 400. Simulation was run in parallel on four GPUs.
Simulated result was found to be in agreement with the analytical solution.

Performance measurements were taken by running the same Couette flow simulation
on five different scenarios, with varying domain sizes. Computation domain was split in either
one or two dimensions. All test cases were run 10 times with 10000 iteration steps on each run,
and wall-clock times were recorded after arithmetical averaging. Most of the data transfer and
communication times were successfully hidden by overlapping communication and computation,
especially for bigger domain sizes. Varying the number of GPUs from 1 to 6 in the same node
was shown to deteriorate the performance, since the GPUs shared the PCIe bus, the bandwidth
became disputed.

Bernaschi et al. [4] evaluated the performance of two major CUDA-aware MPI imple-
mentations: OpenMPI and MVAPICH2. Alternatively, a 3D torus high-performance interconnect
for clusters, APENet+, was utilized and compared with both MPI implementations, since it was
one of the first adapters to allow RDMA transfers and direct access to global GPU memory. Us-
ing a 3D Heisenberg spin model with periodic boundaries in x, y and z directions as benchmark,
time measurements were taken in picoseconds, corresponding to the time required to update
a single spin of the model. In all tests, single precision floating-point was utilized. APENet+
performance was verified to be inferior to Infiniband.

Model computations on the domain were split in red and blue points, in a checkerboard
fashion. Domain decomposition was performed in a single axis, since the goal was to com-
pare different techniques of data exchange between GPUs. Computation and communication
were overlapped through CUDA streams, one stream was used for the computation of red and
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blue inner domain points, and another stream to compute red and blue boundary points and
communication.

Obrecht et al. [28] Multi-GPU implementation of the D3Q19 lattice Boltzmann method
using a multi relaxation time (MRT) collision operator. Intra-node parallelization was achieved
through the use POSIX threads, with global synchronization between sub-domains performed
using thread synchronization constructs at each time step. One thread was assigned to each GPU,
in order to hold its corresponding CUDA context. Inter-GPU communication was made using
page-locked GPU memory and zero-copy memory transactions.

Global lattice was split in regular cuboids along the direction corresponding to the major
dimension, for simplicity. Four buffers were assigned to each interface between sub-domains:
two for incoming data and two for outgoing. Validation of the code was performed using the
well-known lid-driven cavity for cubic domains. Scalability tests were made on a 192x192x192
lattice which could be handled by one up to six GPUs. Also, performance tests were realized on
a 384x384x384 lattice using three, four and six computing devices. Measurements were reported
using the MLUPS metric, on NVIDIA Tesla C1060 GPUs on a Tyan B7015. Performance was in
the same order than the one obtained with optimized double precision code on supercomputers.

Scalability was optimal with no less than 90% parallel efficiency and performance
for single precision using one GPU was reported to be 387 MLUPS on a 192x192x192 lattice,
achieving 80% of the peak memory bandwidth. Simulations were run for up to six GPUs, which
allowed for execution of bigger lattices, 480x480x480 and 384x384x384 cells for single and
double precision, respectively. These bigger lattices, in turn, allowed for simulations with higher
Reynolds numbers, up to 30.000. Running the LBM solver for Reynolds number of 30.000, the
flow had shown to lose symmetry at an early stage of the simulation. To verify if the issued
persisted, different precisions were evaluated: single, double and mixed precisions. Mixed
precision had shown no improvement over single precision and the performance trade-off has
been shown not to be worthy. Symmetry loss was discovered to be related to accumulation of
round-off errors.

Potluri et al. [32] proposed and evaluated three novel designs to improve inter-node
GPU-to-GPU MPI communication in MVAPICH2. Through the use of GPUDirect RDMA over
Infiniband, extra memory copies from device to host and vice-versa can be completely eliminated
in inter-node GPU-to-GPU communication, thus reducing communication overhead.

In the first design, MV2-GDR, the rendezvous protocol was utilized for all message
transfers, to circumvent limitations of the eager protocol for small messages. While using
GDR with the rendezvous protocol gives a low latency path for small message transfers from
GPU memory, it suffered with limited read bandwidth, due to chipset limitations of Intel Sandy
Bridge architectures. In the second design, MV2-GDR-H, the bandwidth limitation arising
from P2P transfers in the underlying chipset was avoided by staging large messages through the
host, while maintaining the rendezvous protocol for small messages, as in the first design. In
order to circumvent hardware limitations, i.e. bandwidth for PCI-e transfers in Sandy Bridge
architectures, the MV2-GDR-H-Advanced design was proposed. It consisted in staging the send
buffer through the host and using RDMA on the receiving process.

Proposed hybrid (MV2-GDR-H-Advanced) solution achieved 69% and 32% improve-
ment for 4Byte and 128KByte messages using MPI Send/Recv operations, on a Sandy Bridge
platform with NVIDIA Kepler K20 GPUs and Mellanox IB FDR adapters. Similar improve-
ments were also observed for bi-directional bandwidth. In collective operations, latency of
4Byte and 1MByte messages was reduced up to 53% and 48%, respectively. Tests were also
conducted with two applications that rely on nearest neighbor communication: AWP-ODC and
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GPULBM. Improvements in overall application execution time (time to solution) for AWP-ODC
and GPULBM were of 30% and 35%, respectively.

Sourouri et al. [38] proposed a intra-node communication scheme for multiple GPUs
sharing the same PCIe bus. State-of-the-art approaches had used one thread or process per GPU,
in order to eliminate kernel launch and synchronization overheads. A pair of streams was created,
one for inner domain point computations and another for boundary point computations and
communication. However, the proposed scheme explored further concurrency by using multiple
threads and CUDA streams. Multiple OpenMP threads were used per GPU, one pair for send
and receive operations of each neighboring subdomain and an assistant thread to coordinate
groups of CUDA streams. Using multiple threads reduced kernel launch overhead, avoided
stalling the main host thread and improved application performance by reducing the gap between
computation and communication.

A group of CUDA streams was also utilized in a per-thread basis, with each group of
streams assigned to an assistant thread. A CUDA stream group consisted in one pair of streams
for sending and receiving, and a one stream for computation of inner domain points. Multiple
streams were used to stack communication such that data exchange could occur simultaneously
on both sides of a subdomain. Usage of multiple streams allowed for a more fine-grained control
of different operations.

Experimental evaluation was performed in three different systems with different GPU
devices: NVIDIA Tesla K20, Tesla C2050 and a GTX 590. The test systems also differed in the
processor and PCIe bus topologies and amount of memory. ECC was disabled for all devices,
since the GTX 590 did not supported it. Two experiments were conducted, the first measured
bandwidth for the proposed solution with and without P2P transfers, comparing it to a baseline
that employed the state-of-the-art at the time. Results of the first experiment have shown that
the proposed scheme outperformed the state-of-the art by 1.4, 1.6x and 1.85x in the GTX 590,
C2050 and K20 platforms, respectively. The second experiment consisted in executing a 3D
7-point stencil application based on the discretization of the Laplace equation. In that scenario,
the experiments have shown that the communication latency could be effectively hidden and the
proposed scheme was 58% and 40% faster for the largest problem sizes on the Tesla C2050 and
GTX 590, respectively.

Chu et al. [8] implemented two novel designs for CUDA-aware MPI libraries, which
improved the performance of non-contiguous data processing and movement, and explored
further concurrency between communication and computation within the GPU and between CPU
and GPU. Both designs take advantage of modern CUDA features, such as Hyper-Q, multiple
streams and event abstractions.

The first proposed design consisted in using CUDA event abstractions for verifying
operation completion and communication. Using custom MPI datatypes, (un)packing operations
are started in different CUDA streams when MPI_Isend or MPI_Irecv is called, and an event is
recorded after each operation is issued, using the same stream for packing and recording. Once
the process calls MPI_Wait and enters the communication progress engine, the CUDA events
previously recorded are queried, then the first one to complete is selected, since it indicates that
the (un)packing operations has completed, and the communication is initiated for the matching
request and polled for completion. To avoid deadlocks, all events are queried, and the first one to
complete is selected by the engine. This design was recommended for GPU-only workloads.

Second design consisted in using CUDA stream callbacks, in order to achieve maximum
overlap for mixed CPU-GPU (hybrid) workloads. It also utilized MPI datatypes and MPI_Isend
or MPI_Irecv for (un)packing. When one of these MPI functions is called, a (un)pack operation
is issued on a separate stream, a completion callback is associated with it and the matching



19

request information is set. After the (un)packing operation completes, a thread is dynamically
spawned by the CUDA runtime for processing the callback. CUDA runtime does not allow for
GPU operations to be issued inside the callback function and, since MPI often requires the use
cudaMemcpy for data transfers from(to) the GPU, a separate helper thread is spawned inside
the callback function for these kinds of transfers. This scheme allows for complete separation
of communication progress and computations in the main MPI thread, while allowing CUDA
context sharing. In the context of this work, only one helper thread is spawned per process, in
order to reduce CPU context switching overhead and reduce the number of shared locks inside
the MPI runtime.

Proposed solutions were tested in two different clusters for intra-node and a mix
of inter- and intra-node communication between GPUs using benchmark applications that
require distinct communication patterns. For intra-node inter-GPU ping-pong experiments using
DDTBench benchmarks, the event-based design achieved up to 54%, 67% and 61% performance
improvement on three distinct finite element benchmark applications. Callback-based design was
not as efficient as the event-based one, because the benchmarks consisted mainly in GPU-only
workloads. The proposed designs also achieved 33% improvement on total execution time of a
halo-exchange based benchmark application using up to 32 GPUs on the Wilkes cluster.

3.3 HPC Framework Architecture
Godenschwager et al. [14] described an update to the previous implementation of

waLBerla, with further optimizations added to improve LBM kernels’ single node performance.
It also adapts the kernel implementations to utilize features of current hardware architectures,
which mainly consists in using SIMD vectorization and multiple cores to saturate main memory
bandwidth, since Lattice Boltzmann methods are memory bound. Furthermore, the domain
decomposition was rewritten, such that it requires a constant amount of memory per process,
regardless of the total number of processes and the shape of the domain. Domain setup and
initialization was also improved using a binary format and other optimizations, such that the
simulation domain setup require less disk and memory space, even with domains with millions
of cells.

A model for single node performance was established for both SuperMUC and
JUQUEEN supercomputers, using the roofline model. Implementation started with a generic
stream-pull kernel, then a kernel written specifically for the D3Q19 stencil and, finally a kernel
that utilized SIMD vectorization and a structure of arrays (SoA) memory layout, which per-
formed the LBM update on a by-direction manner, to circumvent prefetcher limitations with
multiple concurrent load/store streams.

To test the scalability of the framework, weak scaling experiments were performed
using the fastest TRT kernel in two simple scenarios: the lid-driven cavity problem and channel
flow around a fixed obstacle with an obstacle to fluid ratio of less than 1%. In weak scaling
experiments, the parallel efficiency of the framework was only limited by the communication
network of SuperMUC. A parallel efficiency of 92% was achieved using the whole JUQUEEN
machine. Complex vascular geometry processing required some modification to the way lattice
cells were traversed, being a scheme similar to the one employed for sparse matrices, the one
chosen to allow for SIMD vectorization. In all tests, the performance measurements agreed well
with the predictions obtained from performance models (roofline and ECM). waLBerla reached
up to 6638 LBM time steps per second in strong scaling settings, with a resolution of a trillion
cells, that could be used for practical simulations.
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Recently, a Python extension [3] was coupled to the waLBerla C++ multi-physics
simulation framework. While performance critical parts were kept in C++, higher level func-
tionality, like domain setup, simulation control, and evaluation results are possible using Python.
Advantages of the proposed extension were two-fold: ease the burden of using the C++ language,
which domain experts might not have familiarity or experience with, and increase the flexibility
for the setup, control and analysis of simulations.
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Chapter 4

A Scalable GPU Communication
Framework for Stencil Applications

In this chapter, solutions to hide communication latency and improve performance
in the waLBerla framework are presented. State-of-the-art GPU communication solution for
waLBerla does not explore concurrency, therefore a potential increase in performance can be
obtained through concurrency mechanisms, potentially hiding all the communication latency.
Furthermore, advancements in MPI implementations, such as support for GPU memory buffers
are utilized in a novel GPU communication scheme.

4.1 Architecture Overview
Proposed solutions aim to hide communication latency, by exploring CUDA concur-

rency mechanisms, and the use of inner and outer computation kernels. Through the use of
advanced programming techniques and best practices in software engineering, the proposed
implementations maintain flexibility and usability while maintaining performance.

Extensions to the waLBerla framework were implemented, either as new classes or
modifications and capabilities to existing functionalities. The GPUPackInfo communication class
is extended to support zyxf memory layout (array-of-structures) and CUDA streams. A new class,
GPUBufferedScheme is introduced to allow communication using GPU buffers, since waLBerla
supported only host memory MPI buffers. GPU buffers are supported by most modern MPI
implementations that offer CUDA-aware support, and several optimizations exist. An interface
to invoke inner and outer kernels was also developed.

The Kernel class was modified to support CUDA streams, and the boundary handling
and computational kernels of the lattice Boltzmann simulation were also modified to support and
use streams, in order to utilize maximum concurrency within the application.

Details about these and other proposed solutions are described in the next sections of
this chapter. Current communication architecture is presented in Section 4.2.1. Extensions to
the current GPU communication architecture are presented in Section 4.2.2. Time loop setup is
described in Section 4.3. Configurable memory alignment for GPU fields is described in Section
4.4.



22

4.2 GPU Communication Engineering
The state-of-the-art scheme for GPU communication in waLBerla, GPUPackInfo,

improved considerably overall GPU communication efficiency with respect to previous existent
solutions [10]. However, it did not make any use of concurrency mechanisms, such as CUDA
streams, which were hence implemented.

In this thesis, the implementation of GPUPackInfo that makes use of concurrency mech-
anisms is also referred to as asynchronous GPUPackInfo. A reduction in memory copy overhead
was also possible, by reducing the number of calls to the CUDA runtime API (cudaMemcpy3D),
through the use of packing and unpacking kernels.

In order to reduce the communication overhead further, it is also possible to use GPU
memory buffers, since modern MPI implementations can use them to perform communication
directly, making use advanced CUDA features, such as GPUDirect RDMA when it is available.
Since most of waLBerla communication algorithms rely on CPU buffers, a novel communication
infrastructure is introduced that makes use of GPU buffers.

This section presents solutions to improve GPU communication performance and hide
communication latency in waLBerla, including design and implementation details.

4.2.1 Base Communication Architecture
Extending on the work of Carvalho et. al, the GPUPackInfo data packing and unpacking

mechanism is augmented. Support for CUDA streams is introduced, so that asynchronous
memory copies in all stencil directions are possible. Array-of-structures (zxyf) memory layout
is also implemented and tested. Finally, an extra option is added to the packing and unpacking
mechanisms, data can be packed and unpacked with single calls to specialized CUDA kernels,
instead of relying on cudaMemcpy3DAsync.

These two options for packing and unpacking data are available to the users of GPU-
PackInfo through the boolean flag usePackKernels in GPUPackInfo’s constructor. The default
option is to use packing and unpacking kernels, however users can also choose to use cud-
aMemcpy3DAsync instead. Since GPUPackInfo relies on host memory allocated MPI buffers,
a memory copy is required to transfer data between host and device memories in packing and
unpacking operations.

A new communication scheme is also implemented, which makes use of buffers allo-
cated on the GPU memory. The scheme is contained in a new class, GPUBufferedScheme, and
it implements the same communication algorithm as UniformBufferedScheme. All the buffers
passed in GPUBufferedScheme reside on the GPU, and are implemented in the GpuSendBuffer
and GpuRecvBuffer classes, for MPI send and receive buffers, respectively.

In order to contextualize how the communication mechanism works, it is important to
understand at a high-level, how the UniformBufferedScheme class works. Algorithm 1 demon-
strates a high-level representation of how the UniformBufferedScheme::startCommunication()
method works, and its interactions with the MPI buffers. This method implements most of the
communication algorithm.

4.2.2 Communication Architecture Extensions
Concurrency in CUDA is achieved through the use of streams. Streams can be used

throughout the life of the application, either in the framework internal routines or when the user
calls a function or kernel. Therefore, a new singleton class is introduced, GPUManager, which
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Algorithm 1 Pseudo-code for UniformBufferedScheme communication algorithm [10]
1: uniformPackInfo : communication::UniformPackInfo
2: sendBuffer : mpi::SendBuffer
3: recvBuffer : mpi::RecvBuffer
4: for block ∈ structuredBlockForest do
5: for dir ∈ Stencil do
6: neighbor← block.getNeighbor(dir)
7: if block and neighbor are owned by the same process then
8: uniformPackInfo.communicateLocal(block, neighbor)
9: else

10: uniformPackInfo.packData(block, dir, sendBuffer)
11: mpiExchangeBuffers() // perform MPI communication between neighbors
12: uniformPackInfo.unpackData(block, dir, recvBuffer)
13: end if
14: end for
15: end for

initializes and manages CUDA streams for the entire framework. Stream initialization is tied
with the application stencil, such that one stream is provided for each direction of the stencil.
This scheme allows the use of concurrent streams to pack and unpack data in different directions,
as well as to issue concurrent outer kernels, one for each stencil direction.

In order to explore CUDA concurrency mechanisms and enable communication latency
hiding in the simulation, GPUPackInfo class is extended to utilize streams and asynchronous
operations, specifically cudaMemcpy3DAsync and specialized kernels for packing and unpacking.
Implementation of packing and unpacking kernels is presented in Listing 4.1.

Packing and unpacking kernels are set to be used by default in GPUPackInfo. In this
case, data is (un)packed (from)into the buffer using a single kernel call, regardless of direction.
The kernel is executed in the stream that corresponds to the direction of the field being packed.
In order to perform the operation, a staging buffer is allocated in GPU memory, so that when the
kernel completes, only a single memory copy is required from GPU to host to insert the data into
the buffer, and vice-versa in the receive case.

Listing 4.1: GPU packing and unpacking kernels
1 template< typename T > __device__ __forceinline__
2 T & getBuffer( unsigned char * __restrict__ bufferBasePtr, size_t index )
3 {
4 return *(T*)( bufferBasePtr + index * sizeof(T) );
5 }
6

7 template< typename T > __device__ __forceinline__
8 const T & getBuffer( const unsigned char * __restrict__ bufferBasePtr,
9 size_t index )

10 {
11 return *(T*)( bufferBasePtr + index * sizeof(T) );
12 }
13

14 template< typename T > __global__
15 void packDataKernel( cuda::FieldAccessor<T> src,
16 unsigned char * __restrict__ buf )
17 {
18 src.set(blockIdx, threadIdx);
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19 const uint_t bufferIndex = src.getLinearIndex(blockIdx, threadIdx,
20 gridDim, blockDim);
21

22 if ( src.isValidPosition() )
23 {
24 getBuffer<T>(buf, bufferIndex) = src.get();
25 }
26 }
27

28 template< typename T > __global__
29 void unpackDataKernel(cuda::FieldAccessor<T> dst,
30 unsigned char * __restrict__ buf)
31 {
32 dst.set(blockIdx, threadIdx);
33 const uint_t bufferIndex = dst.getLinearIndex(blockIdx, threadIdx,
34 gridDim, blockDim);
35 if ( dst.isValidPosition() )
36 {
37 dst.get() = getBuffer<T>( buf, bufferIndex );
38 }
39 }
40

41 template< typename T > __global__
42 void localCommunicationKernel(cuda::FieldAccessor<T> dst,
43 cuda::FieldAccessor<T> src)
44 {
45 dst.set(blockIdx, threadIdx);
46 src.set(blockIdx, threadIdx);
47 // Copy data directly from source to destination field
48 dst.get() = src.get();
49 }

Support for GPU memory buffers is introduced in GPUBufferedScheme. It utilizes the
same communication algorithm as UniformBufferedScheme and implements the same interface,
the only difference is the type of buffers involved. GpuSendBuffer and GpuRecvBuffer classes
implement the GPU memory buffers, which can be supplied directly to MPI implementations
that support CUDA pointers, also known as CUDA-aware MPI implementations. These buffer
implementations follow the same interface as their CPU counterparts, mpi::SendBuffer and
mpi::RecvBuffer.

4.3 Timeloop Setup
Hiding communication latency requires overlapping computation with communication.

Communication in Lattice Boltzmann method simulations require the exchange of boundary
points from blocks, however the boundary points must be updated prior to the communication
step. Usually, the domain points are updated all at once, in a single kernel. To eliminate this
dependency, the LBM kernel is split into inner and outer kernels, with the inner kernel computing
the inner block points and outer kernel computing the boundary block points.

Separating the LBM kernel into inner and outer kernels allows the overlap of computa-
tion and communication, since the communication does not have to wait for the computation
of all domain points to complete. Timeloop setup in waLBerla has to be changed, to carry out
these new operations, instead of the classic LBM setup. Figure 4.1 depicts how the timeloop
is executed to overlap computation of inner points and communication. Since these operations
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Figure 4.1: Timeloop setup with inner and outer kernels. Outer kernel compute boundary points
of the block, while inner kernel computes inner points of the block. One CUDA stream is used
for the inner kernel, and a stream is used for each neighboring process, which is represented by
Stream i
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are performed in separate CUDA streams, they are executed concurrently. A synchronization
operation on all streams is performed at the end of the timeloop, to ensure all operations have
completed before starting the next time step.

4.4 Configurable GPU Field Memory Alignment
Configurable memory alignment for GPU fields is introduced in the GPUField class.

Through handcrafted memory allocation, different alignments are supported, and cudaMalloc3D
is no longer necessary. Padding in the innermost dimension is utilized in the GPUField class
constructor, by checking if the innermost dimension is aligned to the desired alignment.

In order to enable the custom alignment, the usePitchedMem flag must be set to true in
the constructor. Listing 4.2 demonstrates how the allocation works.

Listing 4.2: GPUField custom alignment allocation
1 cudaExtent extent;
2 if ( layout_ == zyxf )
3 {
4 extent.width = (_fSize ) * sizeof(T);
5 if ( usePitchedMem_ )
6 {
7 // extent.width is already in bytes
8 const size_t nrOfMisalignedBytes = extent.width % alignmentSize;
9 const size_t nrOfPadBytes = alignmentSize - nrOfMisalignedBytes;

10 extent.width = extent.width +
11 (nrOfMisalignedBytes > 0 ? nrOfPadBytes : 0);
12 }
13 extent.height = (_xSize + 2 * _nrOfGhostLayers );
14 extent.depth = (_ySize + 2 * _nrOfGhostLayers ) *
15 ( _zSize + 2 * _nrOfGhostLayers );
16 }
17 else
18 {
19 extent.width = (_xSize + 2 * _nrOfGhostLayers ) * sizeof(T);
20 if ( usePitchedMem_ )
21 {
22 // extent.width is already in bytes
23 const size_t nrOfMisalignedBytes = extent.width % alignmentSize;
24 const size_t nrOfPadBytes = alignmentSize - nrOfMisalignedBytes;
25 extent.width = extent.width +
26 (nrOfMisalignedBytes > 0 ? nrOfPadBytes : 0);
27 }
28 extent.height = (_ySize + 2 * _nrOfGhostLayers );
29 extent.depth = (_zSize + 2 * _nrOfGhostLayers ) * _fSize;
30 }
31

32 pitchedPtr_ = make_cudaPitchedPtr( NULL, extent.width, extent.width,
33 extent.height );
34 cudaMalloc( &pitchedPtr_.ptr, extent.width * extent.height * extent.depth );
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Chapter 5

Materials and Methods

This chapter describes hardware, software, methods and goals to demonstrate the
validity and performance of the proposed solutions. Validation experiments are performed to
verify that the solutions produce the expected outputs. Performance experiments are performed
to evaluate the performance of proposed solutions in worst case scenarios, as well as their
scalability. Proposed solutions are compared with the state-of-the-art communication solution
for waLBerla [10].

5.1 Hardware and Software
Two different systems of the C3HPC cluster [6] were utilized to run the validation

and performance tests. These systems share the same CPU, memory and network adapter
specifications, since they are all part of the C3HPC cluster. GPU specifications for the nodes are
presented in Table 5.1. Other relevant specifications are presented in the following list:

• CPU: Intel Xeon CPU E5-4627 v2 Ivy Bridge EP @ 2.6 GHz (with max clock rate of 3.3
GHz)

• Cores: 8

• Sockets: 4

• RAM per node: 256 GB DDR3

• PCIe: v3.0 x16

• Network controller: Mellanox Technologies MT27500 Family [ConnectX-3]

• OS: Linux 4.4.35

• Compiler: g++ v4.9.2, nvcc 7.5.17

• MPI: OpenMPI 1.10.2, with CUDA support

• Location: DINF, Federal University of Paraná

GPU characteristics for each type of node are described in table 5.1.
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Kepler Fermi
Number of nodes 2 1
GPUs per node 2 2
GPU NVIDIA Tesla K40m NVIDIA Tesla C2075
CUDA driver version 7.5 7.5
CUDA compute capability 3.5 2.0
CUDA cores 2880 448
Core clock 745 MHz 1150 MHz
Total memory 11520 MB 5375 MB
Memory clock 3.0 GHz 1.5 GHz
Memory bandwidth 288 GB/s 144 GB/s
ECC (error-correcting code) Enabled Enabled
NVCC flags -std=c++11 -O3 -arch=sm_35 -std=c++11 -O3 -arch=sm_20

Table 5.1: Hardware and software characteristics for GPU nodes with Kepler and Fermi devices.

Currently, the CUDA toolkit requires a compute capability of at least 2.0, since support
for previous architectures will be discontinued in the next release. However, the compute
capability 3.5 is recommended, specifically for nodes equipped with NVIDIA Tesla K40m GPUs.
CUDA version 7 or newer is required to compile the proposed solutions [10], since they make
extensive use of C++11 template features, and so does the waLBerla framework.

All solutions were developed based on commit b96c6485-2016-07-14 of the cuda-
comm branch, which was based on a commit from the topic/cuda branch [10], from the official
waLBerla repository. Experiments performed in this work were performed using the Release
mode from waLBerla’s build system, which enables the highest levels of compiler optimizations
(e.g. -O3 flag). Support for CUDA and Python extensions were enabled on the build system, i.e.
WALBERLA_BUILD_WITH_CUDA and WALBERLA_BUILD_WITH_PYTHON.

5.2 Validation
In this section, the experiments to validate the proposed solutions are presented. Sim-

ulation setups are similar to the ones presented by Carvalho et. al [10]. A Lid-driven cavity
simulation is utilized with changing parameters to verify the validity and performance of the
proposed solutions. Results are compared with the ones obtained by Carvalho et. al [10], for the
same simulation and scenarios.

To verify the correctness of the simulation, the velocity profiles for the x and z compo-
nents are obtained for the y mid-plane. Then, these values are compared with reference values
documented in the literature [10, 34]. Streamlines are also obtained to verify if a vortex is formed
around an axis in the y direction.

Validation tests are performed with a 3-D lid-driven cavity simulation, D3Q19 stencil
lattice Boltzmann implementation with SRT/BGK collision operator, using 10000 iterations,
contiguous (linear) memory, structure-of-arrays memory layout (fzyx layout), ECC enabled and
cuda::FieldIndexing as the indexing scheme. There is an exception, though, the validation with
the reference values required more iterations to converge to the reference values, and 20000
iterations were used to guarantee the convergence in the Fermi node. These extra number of
iterations are attributed to an issue with the Lattice Boltzmann method simulation, particularly in
the inner and outer kernel setup. Since there was not enough time to find the exact cause, the
investigation of the cause of the issue is suggested as future work.



29

Two communication schemes were tested: GPUBufferedScheme (which uses GPU
buffers), and GPUPackInfo with CUDA streams (asynchronous). In the list below, the validation
tests are presented:

1. Domain decomposition: Validates the implementation of intra-GPU communication for
both GPUBufferedScheme and asynchronous GPUPackInfo, the implementation of the
local communication kernel, and GPUManager’s stream management. Simulation is setup
with 1283 cells, with the top velocity vector v = (0.1,0,0), and ω = 1.4.

2. Multiple devices per node: Validates the implementation of intra-node communication in
a single node. The implementation of packing and unpacking kernels of both GPUBuffered-
Scheme and asynchronous GPUPackInfo are tested. In the case of GPUBufferedScheme,
the implementations of both GpuSendBuffer, GpuRecvBuffer and GPUBufferPackInfo are
also tested. Particularly, GpuSendBuffer::forward() and GpuRecvBuffer::skip() methods
are utilized in GPUBufferPackInfo. No Infiniband is tested in this test case. Simulation
is setup with 43 blocks of 323 cells running on 23 processes. Blocks are processed on 2
devices of a single node.

3. Multiple nodes: Validates the implementation of inter-node communication, which in-
cludes MPI and Infiniband. Simulation setup consists of 43 blocks of 323 cells running on
23 processes, over 2 nodes with Kepler GPUs (i.e. 4 GPUs). Two processes are allocated
per GPU. Processes with odd ranks are mapped to the first node, and the ones with even
ranks on second node.

5.3 Performance
In this section, the experiments to evaluate the performance and scalability of the

proposed solutions are presented. Performance is evaluated with respect to the overall communi-
cation time, communication direction imbalance and scalability.

A 3D lid-driven cavity simulation using the D3Q19 stencil is utilized in all experiments.
All test cases utilize double precision floating-point, contiguous memory with structure-of-arrays
(fzyx) layout. FieldIndexing is used to setup all CUDA kernels, and the device error-correction
code (ECC) is always turned on.

Performance is measured based on the wall-clock time of the simulation loop, discarding
the time spent in initialization and termination. Simulation is executed for 200 iterations, and
repeated 10 times within the same process to mitigate warm-up interference – e.g. JIT compilation
in the driver [24]. Only the smallest wall-clock time is regarded. All measurements are based on
the mega lattice updates per second (MLUP/s).

5.3.1 Communication Performance
In this section, an experiment is presented to verify the communication performance of

the proposed communication solutions for waLBerla, compared with the previously implemented
state-of-the art communication scheme, GPUPackInfo [10].

Overall communication times vary between different uniform domain decompositions.
Variations in these times occur because blocks have different amounts of data to communicate
with a varying number of neighboring processes. In the case of the D3Q19 stencil, on a non-
periodic domain, blocks that are internal to the decomposition always have to communicate
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with 18 neighbors (worst case scenario), while blocks on the boundaries can have from 6 to 13
neighbors.

Communication in all directions dominates the overall simulation time. Therefore, a
decomposition that explores this scenario would be of interest to demonstrate how the proposed
solutions perform. In order to do that with the D3Q19 stencil, it would be necessary to decompose
the domain using 3 blocks in each direction, such that the block at middle of the cube (Bx = 2,
By = 2, Bz = 2), has to communicate with 18 neighbors. Doing so would require 27 GPUs,
because each block is assigned to one GPU. Since the C3HPC cluster offers only up to 4 Kepler
GPUs, the domain is set to be periodic in all directions, so that all blocks have to communicate
with 18 neighbors in each communication step, thus circumventing the limitation on the number
of GPUs.

Performance test is carried out on two Kepler nodes of the C3HPC cluster. Both
GPUBufferedScheme and asynchronous GPUPackInfo are used for the communication step in
separate runs, and compared with the previous state-of-the-art solution, GPUPackInfo. The
domain is decomposed into 4 cubic blocks (Bx = 1, By = 2, Bz = 2), with one block per Kepler
GPU. Simulation is repeated for 8, 16, 32, 64, 128 and 256 cubic domain sizes.

5.3.2 Communication Direction Imbalance
In this section, an experiment is presented to verify the overall communication time for

each of the three directions, x (east/west), y (north/south), z (top/bottom), and demonstrate the
higher communication overhead in some of these directions.

Neighboring block communication using ghost layers involves copying slices of axis-
aligned data from fields. Copy performance may vary between slices, depending on the directions
and memory layout of fields, mainly due to element strides. For the D3Q19 stencil, a process
may have up to 18 neighbors to communicate. Since the domain is cubic, there are directions
that extract planes from the cube (6 directions), which have ni×n j×g elements, directions that
extract lines (12 directions), which have ni×g elements. Therefore, there are different amounts
of data being copied depending on the direction.

Communication direction imbalance test is proposed to measure these discrepancies.
The experiment consists in running the lid-driven cavity simulation, using a structure-of-arrays
(fzyx) memory layout. Simulation domain is decomposed into 2 blocks, running on separate
Kepler nodes of the C3HPC cluster, decomposing in each of the x, y and z directions. Blocks
were kept cubic to prevent interference of any performance impact that could be introduced by
directional changes in shape. Experiment was repeated with cubic block sizes of 16, 32, 64, 128
and 256 cells.

5.3.3 Scalability
In this section, an experiment is presented to verify the scalability of the proposed

solutions. Two scalability experiments are proposed: weak and strong scaling [18].
Weak scaling consists in increasing the workload with the number of processes, in order

to explore bigger domain sizes. The proposed experiment consisted in running the lid-driven
cavity simulation with 1, 2, and 4 blocks, with the cubic block size fixed to 256 cells.

Strong scaling consists in reducing the time to solution (overall simulation time), by
decomposing the domain further, as more processes are added. The proposed experiment
consisted in running the lid-driven cavity simulation, decomposing the domain into 1, 2, and 4
blocks, using a cubic domain size of 256 cells.
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Figure 5.1: Representation of the xz and yz block decompositions, from left to right. Initial
block has the blue color, the second block in the decomposition is depicted with the color green.
The last two blocks for the decomposition with 4 blocks, are depicted with the color red.

Both scalability experiments were performed on Kepler nodes of the C3HPC cluster,
with exactly one block per Kepler GPU. Domain was setup to be periodic in all directions, since
periodic domains are the worst case scenario in terms of communication. Due to the limitation
in the number of available GPUs, it was only possible to test the domain decomposition in two
directions, since decomposing in three directions would require at least 8 GPUs. Therefore,
two different scenarios for each type of scaling were tested to cover all domain decomposition
directions:

1. xz decomposition: A first decomposition is performed in the x-axis and a second in the
z-axis.

2. yz decomposition: A first decomposition is performed in the y-axis and a second in the
z-axis.

The xz and yz decompositions are illustrated in Figure 5.1. In the case of weak scaling,
blocks with a cubic size of 2563 cells are added, as the number of processes increases. As for
strong scaling, an initial block of 2563 cells, is divided between processes, according to the
direction of the decomposition. For example, in the first x-direction decomposition, with two
processes, the block is decomposed into 2 blocks of (128,256,256) cells, with one block per
process, in the strong scaling case.
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Chapter 6

Results and Discussion

6.1 Validation Results
In this section, the results from the validation experiments proposed in Chapter 5 are

presented. Velocity profiles are extracted and compared with reference values from the literature
[34, 10]. Figure 6.1 shows the streamlines for the converged solution of the LBM, after 20000
iterations, with a vortex forming around the y-axis, as expected.

Figure 6.1: Streamlines for the converged solution of the lid-driven cavity problem.

Velocity profiles are extracted from the last time step of the LBM simulation after 20000
iterations. Simulation domain coordinates were normalized to the interval [0,1]. A slice of the
three dimensional domain is taken in the middle of the y-axis (y = 0.5), and the velocity profiles
of the x and z axes are taken.

In order to extract the velocity profile from the x-axis, the x coordinate is fixed at the
mid-plane (x = 0.5), and the velocity is measured for varying values of z. The same process is
done to extract the velocity in the z-axis, with z fixed at the z coordinate mid-plane.

Figure 6.2 depicts the velocities taken from the x and z axes, at the y mid-plane, which
are referred as Vx and Vz, respectively. All validation simulations produce the same profile and
are represented with lines. Reference values are represented with points. Results on Figure 6.2
demonstrate that the simulation results match with the reference values.
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Figure 6.2: Velocity profiles for x and z components (Vx and Vz, respectively) at the y-midplane,
compared with reference values from the literature [10, 34].

6.2 Performance Results
In this section, the results and analysis of the performance experiments, proposed in

Section 5.3, are presented.

6.2.1 Communication Performance Results
In this section, the results and analysis of the communication performance experiment,

proposed in Section 5.3.1, are presented.
As shown in Figure 6.3, both the proposed communication solutions, asynchronous

GPUPackInfo and GPUBufferedScheme, outperform the state-of-the-art communication scheme,
GPUPackInfo. Asynchronous GPUPackInfo has shown the best performance for the test scenario.
In the same scenario, GPUBufferedScheme has shown a similar performance to GPUPackInfo.

Performance increase with asynchronous GPUPackInfo is more significant, as bigger
block sizes are utilized, starting from 643. For a block size of 2563 cells, asynchronous GPU-
PackInfo achieved 1149 MLUP/s, while GPUBufferedScheme and GPUPackInfo achieved 748
and 760 MLUP/s, respectively.

Communication latency was hidden up to 52% using asynchronous GPUPackInfo, with
a block size of 3203. This result comes from the fact that the measured single GPU performance
on a Kepler GPU for the same block size was 550 MLUP/s, and if communication latency was
fully hidden on the four Kepler nodes, a result of 2200 MLUP/s would be achieved. However,
this is the worst case scenario, in which the domain is periodic in all directions, i.e. every process
has to communicate in 18 directions. Hence, it is expected that communication can be further
hidden when non-periodic domains are utilized.

The same experiment was performed with another MPI implementation, MVAPICH2
2.3, and it showed that the performance GPUBufferedScheme is highly dependent on the per-
formance of the MPI implementation. Using MVAPICH2, GPUBufferedScheme performed
considerably better than using OpenMPI. This is very likely related to the several optimizations
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that MVAPICH2 employs, which were described in more detail in Chapter 3. Since MVAPICH2
with CUDA support was not available in the C3HPC cluster, the experiment was conducted on
the VRI group’s server [1], using only intra-node GPU communication with 2 NVIDIA GeForce
Titan X GPUs. Results of this experiment are presented in Figure 6.4. Therefore, it is highly
recommended that users rely on the MVAPICH2 MPI implementation to improve communication
performance in GPU simulations, specially with larger block sizes.

These results show that the proposed communication solutions improve communication
performance with respect to the state-of-the art communication solution available in waLBerla.
Furthermore, it is important to choose a proper MPI implementation in order to take the maximum
advantage of GPU buffer based communication.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320
Cubic Domain Size

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

P
er

fo
rm

an
ce

 [M
LU

P
/s

]

Communication Performance

GPUBufferedScheme
Async. GPUPackInfo
GPUPackInfo

Figure 6.3: Performance comparison of the state-of-the art communication scheme, with the
proposed solutions. Results are measured for increasing cubic block sizes. The experiment was
performed on 4 Kepler nodes and the domain decomposition in this case is (x = 1,y = 2,z = 2).
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Figure 6.4: Performance comparison of the state-of-the art communication scheme, with the
proposed solutions, using MVAPICH2 2.3 with CUDA support. Results are measured for
increasing cubic block sizes. The experiment was performed on 2 NVIDIA GeForce Titan X
GPUs of the VRI group’s server (single node) and the domain decomposition in this case is
(x = 1,y = 1,z = 2). In this case, only intra-node GPU communication is performed.

6.2.2 Communication Direction Imbalance Results
In this section, the results and analysis of the communication direction imbalance

experiment, proposed in Section 5.3.2, is presented. Previous results for the communication
direction imbalance were reported by Carvalho et. al [10], with a bigger impact when the
communication happened at the x-axis

Although the simulation performance when the domain is decomposed along the x-axis
still affects the performance of GPUPackInfo, the same trend is not verified in GPUBuffered-
Scheme. The discrepancy between the performance of the x-axis communication and the
communication in y and z axes is still significant in asynchronous GPUPackInfo. In GPUB-
ufferedScheme, there is still a gap in the same scenario, however the performance does not
degrade as severely as in the case GPUPackInfo.

Therefore, the use of GPUBufferedScheme is recommended for simulations that require
a higher ratio of decomposition in the x direction. While for GPUPackInfo, the same advice
remains from [10], i.e. the domain should be further decomposed in the y and z directions, in
comparison with the x direction, to reduce the amount of data that is communicated in that
direction.
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Figure 6.5: Communication direction imbalance results for the proposed communication solu-
tions.

6.2.3 Scalability Results
In this section, the results and analysis of the weak and strong scaling experiments,

proposed in Section 5.3.3, are presented. Weak scaling experiment results for different domain
decompositions are depicted in Figure 6.6. Likewise, strong scaling results are depicted in Figure
6.7.

Results in the weak scaling experiment, demonstrated that GPUBufferedScheme out-
performed the asynchronous GPUPackInfo on almost all domain decompositions. For the xz
decomposition, GPUBufferedScheme completely outperforms GPUPackInfo, achieving up to
854 MLUP/s on 2 Kepler nodes, while GPUPackInfo achieves only 100 MLUP/s.
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Figure 6.6: Results of the weak scaling experiment for a cubic domain size of 256 cells, for the
xz and yz domain decomposition directions.

Note that the yz decomposition presents the best scalability curve, with the performance
increasing almost linearly as more nodes are added, specially for asynchronous GPUPackInfo.
However it is not possible to precise where the scalability curve stabilizes, since there are only 4
GPUs available in the cluster. Finally, GPUBufferedScheme performed more consistently for
different domain decompositions, even when the domain was decomposed in the x-direction.
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Figure 6.7: Results of the strong scaling experiment for a cubic domain size of 256 cells, for the
xz and yz domain decomposition directions.
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Chapter 7

Conclusion

In this thesis, solutions for improving communication performance, hiding communi-
cation latency, and usability of GPUs in the HPC field, considering different communication
scenarios were proposed. Two GPU communication solutions were evaluated.

Due to the increasing role of GPUs in supercomputers, GPU support in HPC software
frameworks becomes an important feature. Therefore, adding the proposed solutions into an HPC
software framework so that they can be easily utilized by all users of the framework, consists in
a valuable contribution.

Previous state-of-the-art communication strategy for the waLBerla framework did not
explore concurrency mechanisms. In order to improve its performance, CUDA streams and
(un)packing kernels were introduced. A novel communication scheme was also introduced, that
makes use of GPU memory buffers, which are supported by modern MPI implementations.

Proposed solutions achieved up to 50% improvement over the state-of-the-art GPU
communication solution, on the worst case scenario for communication, using a periodic domain
in all directions. In the case of the GPU memory buffer based solution, performance was also
shown to be dependent on the underlying MPI implementation and communication direction
imbalance in the x-direction did not impose a big performance penalty, in comparison with
previous solutions. Configurable memory alignment for GPU fields was also introduced, allowing
different memory alignments to be used in simulations.

Finally, there are still many challenges for utilizing the full potential of GPUs on su-
percomputers. Improving communication performance brings a valuable benefit, however the
biggest challenge is to perform load balancing in processes that are performing GPU computa-
tions, which stems from adaptive grid refinements with GPU fields (also, not yet possible). Load
balancing of processes is still a subject for future research.

7.1 Future Work
During the development of the proposed solutions and after analyzing the results of the

proposed experiments, the following possibilities for future work were identified:

• Investigate the problem in the validation experiment, in which 20000 iterations were
required for convergence. Also, the results did not fit all the reference values. In a previous
work [10], 10000 iterations were required for convergence.

• Allow for GPU structures to be used from waLBerla’s Python interface, which is supported
for CPU fields. This would allow GPU simulations to be setup and performed using Python
instead of C++ code.
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• Testing the proposed domain decomposition strategy to verify the communication im-
balance problem, which could not be tested because it requires a system with at least 27
GPUs, but none of the available systems met this requirement.

• Adaptive grid refinement for GPU fields, which is supported for CPU fields. An imple-
mentation could be based on the work performed for CPU fields [36].

• Load balancing for non-uniform grids on GPUs, which is supported for CPUs in waLBerla,
but not on GPUs. An implementation could be based on the work performed for CPU
fields [35].
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